$B_{J}(5840)^{0}$

$$I(J^P) = \frac{1}{2}(?^?)$$

 $I, J, P \text{ need confirmation.}$

OMITTED FROM SUMMARY TABLE

Quantum numbers shown are quark-model predictions.

$B_{I}(5840)^{0}$ MASS

OUR FIT uses m_{B^+} and $m_{B_J(5840)^0} - m_{B^+}$ to determine $m_{B_J(5840)^0}$.

VALUE (MeV)

DOCUMENT ID

5863±9 OUR FIT

$m_{B_J(5840)^0} - m_{B^+}$									
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT				
584± 9 OUR FIT									
584± 5±7	12k	¹ AAIJ	15 AB	LHCB	<i>pp</i> at 7, 8 TeV				
 • • We do not use the following data for averages, fits, limits, etc. 									
$610 \pm 22 \pm 7$	12k	² AAIJ	15 AB	LHCB	<i>pp</i> at 7, 8 TeV				
1 AAIJ 15AB reports $[m_{B^0_J} - m_{B^+}] - m_{\pi^-} =$ 444 \pm 5 \pm 7 MeV which we adjust by									
the π^- mass. The masses inside the square brackets were measured for each candidate									
event. The result assumes $P=(-1)^{J}$ and uses two relativistic Breit-Wigner functions									
in the fit for mass difference. 2 AAIJ 15AB reports $[m_{B_J^0}^0-m_{B^+}]-m_{\pi^-}=471\pm22\pm7$ MeV which we adjust by									
² AAIJ 15AB reports	$[m_{B_J^0} - m$	$[m_{B^+}] - m_{\pi^-} =$	471 ±	22 ± 7	MeV which we adjust by				
the π^- mass. The masses inside the square brackets were measured for each candid									
event. The result a	ssumes P =	$\in (-1)^J$ and uses	s three r	elativist	tic Breit-Wigner functions				

in the fit for mass difference. $m_{B_I(5840)^0} - m_{B^{*+}}$

DOCUMENT ID TECN COMMENT **EVTS**

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $584\!\pm\!5\!\pm\!7$

 1 AAIJ 1 AAIJ 1 15AB LHCB 1 1 7. 8 TeV 1 AAIJ 15AB reports $[m_{B^0_J}^{}-m_{B^+}^{}]-(m_{B^{*+}}^{}-m_{B^+}^{})-m_{\pi^-}^{}=$ 444 \pm 5 \pm 7 MeV

which we adjust by the π^- mass. The masses inside the square brackets were measured for each candidate event. The result assumes $P=-(-1)^J$, $(m_{R^{*+}}-m_{R^+})=45.01\pm$ 0.30 ± 0.23 MeV, and uses three relativistic Breit-Wigner functions in the fit for mass difference.

B₁(5840)⁰ WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
127±17±34	12k	¹ AAIJ	15 AB	LHCB	pp at 7, 8 TeV
• • We do not use the	e following	data for averages	, fits,	limits, e	tc. • • •
$107 \pm 20 \pm 34$	12k	² AAIJ	15 AB	LHCB	<i>pp</i> at 7, 8 TeV
$119 \pm 17 \pm 34$	12k	³ AAIJ	15 AB	LHCB	pp at 7, 8 TeV

 $^{^{1}}$ Assuming $P=(-1)^{J}$ and using two relativistic Breit-Wigner functions in the fit for mass

Created: 8/2/2019 16:43

difference. 2 Assuming $P=(-1)^J$ and using three relativistic Breit-Wigner functions in the fit for

mass difference. 3 Assuming $P=-(-1)^J$ and using three relativistic Breit-Wigner functions in the fit for mass difference.

$B_J(5840)^0$ DECAY MODES

Mode		Fraction (Γ_i/Γ)							
$ \Gamma_1 \qquad B^{*+}\pi^- \\ \Gamma_2 \qquad B^+\pi^- $			seen possibly seen						
B _J (5840) ⁰ BRANCHING RATIOS									
$\Gamma(B^{*+}\pi^{-})/\Gamma_{\text{total}}$	5) (7)	DOCUMENT ID	TECH	60141517	Γ_1/Γ				
<u>VALUE</u> seen		<u>DOCUMENT ID</u> AAIJ		<i>COMMENT</i> pp at 7, 8 TeV					
$\Gamma(B^+\pi^-)/\Gamma_{ ext{total}}$		DOCUMENT ID	<u>TECN</u>	COMMENT	Γ ₂ /Γ				
possibly seen		¹ AAIJ	15AB LHCB	<i>pp</i> at 7, 8 TeV					
1 A $B\pi$ decay is forbidden from a $P=-(-1)^J$ parent, whereas $B^*\pi$ is allowed.									

$B_J(5840)^0$ REFERENCES

AAIJ 15AB JHEP 1504 024 R. Aaij et al.

(LHCb Collab.)

Created: 8/2/2019 16:43